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The problem of the vibration of a non-prismatic beam resting on a two-
parameter elastic foundation has been solved by applying the approximation by
Chebyshev series. As a result, closed analytical formulas de"ning the coe$cients of
the sought solutions were obtained. The method was used to solve the eigenprob-
lem for a simply supported beam and a cantilever beam. The obtained results were
compared with the results reported by other authors.
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1. INTRODUCTION

Variable cross-section bar systems have been gaining popularity as elements of
contemporary building structures due to the necessity of rational shaping, an
economical design of structures as well as architectonic reasons. Solutions to many
structural analysis problems, including stability problems, can be found in a
monograph by Krynicki and Mazurkiewicz [1]. The authors of this work
considered many complex states of loading. The solutions they found are in
an analytical form. They limited themselves, however, to bars for which the
moment of inertia of the cross-section can be described by the function
J(m)"J

s
) (k

i
(1!m)#k

k
m)n n"0, 2, 3, 4. An analytical solution consisting the

expansion of the displacement function into a Fourier series, the calculation of the
kinetic energy and the elastic strain energy and then solving the Lagrange equation
is presented by Heidebrecht in reference [2]. The application of the Fourier series
supplemented with power polynomials to the solution of a broad class of problems
described by linear variable-coe$cient di!erential equations, stemming from, for
example, problems of the vibration of bars with variable cross-section, is presented
in a paper by Gonga Rao and Spyrakos [3]. The sti!ness matrix and the inertia
matrix for a beam with a linearly variable height were determined by Gupta [4]
who used them to solve the eigenproblem for a cantilever beam and for a simply
supported beam. Eisenberger [5] determined the rigidity-matrix elements for
several kinds of non-prismatic beams. Eisenberger and Reich [6] applied the "nite
element method to the solution of static and dynamic problems, approximating the
displacement of the beam by 3rd degree polynomials. The beam's rigidity and
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density in the considered problems was described by power series. Formulas for the
determination of the rigidity matrix''s elements for a beam element with variable
axial, torsional and #exural rigidity described by power series were presented by
Eisenberger in reference [7]. The same polynomial approximation was used by
Klasztorny [8] to determine the rigidity matrix and the inertia matrix of Euler- and
Timoshenko-type beam "nite elements. Many exemplary problems illustrating
the use of this method were solved in reference [8]. The generalization of the
formulas determined in reference [7], which describe the rigidity and inertia
matrices for variable rigidity and density bars resting on a two-parameter
foundation, can be found in a paper by Glabisz [9], where the problem of the
stability of a non-prismatic rod subjected to non-conservative loads is considered.
Similar to references [7, 8], power series were used to approximate the
displacement functions.

The present paper deals with the problem of the linear vibration of a beam with
variable strength and geometric parameters, resting on a two-parameter, hetero-
geneous elastic foundation [10]. It is assumed that the variable parameters of
the bar, such as #exural and axial rigidity and density, the variable parameters
of the foundation and the load can be represented by a series expansion in
relation to 1st kind Chebyshev polynomials. Using the theorems and relationships
applicable to these polynomials found in the monograph [11], a solution in the
form of a Chebyshev series is found. The coe$cients of this solution are de"ned
by closed analytical formulas. The longitudinal and transverse vibration of the bar
is analyzed. By analogy to the equations, which describe the longitudinal and
#exural motion of the bar, the relations derived for the longitudinal vibration
can be used to determine the #exural vibration. This method was applied to solve,
as an example, the eigenproblem for a simply supported beam and a cantilever
beam. The obtained numerical results were compared with those published in
references [2, 4].

2. FORMULATION OF PROBLEM

A non-prismatic rectilinear Euler beam 2a in length, resting on a two-parameter
elastic foundation, subjected to dynamic normal load P(X, t) and tangent load
R(X, t) (Figure 1) is considered.

The linear, transverse vibration of the beam is described by the following partial
di!erential equations:

L2

LX2AEJ(X)
L2=
LX2B!

L
LX AN(X)

L=
LXB!C(X)

L2=
LX2

#K(X)=(X)

#o(x)
L2=
Lt2

"P(X, t), (1)

!

L
LXAEA(X)

L;
LXB#F(X);(X)#o(X)

L2;
Lt2

"R(X, t), (2)



Figure 1. A diagram of a typical non-prismatic beam.
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where= and; stand, respectively, for the displacements which are perpendicular
and tangent to the beam axis, E is Young's modulus, A and J are the beam's
cross-sectional area and moment of inertia, o is mass per unit of length, and F(X),
K(X), C(X) are functions describing elastic-foundation reactions.

To de"ne boundary conditions, which follow from the type of support at the
points $a, the relations de"ning the beam cross-section angular displacement, the
bending moments, the shearing forces and the axial forces will be used:

U(X, t)"
L=
LX

,

M(X, t)"!EJ
L2=
LX2

,

¹(X, t)"!

L
LXAEJ

L2=
LX2B!N

L=
LX

,

S(X, t)"EA
L;
LX

, (3)

As dimensionless quantities x"X/a, w"=/a, u";/a are introduced, equations
(1) and (2) assume the following form:

EJ(x)
L4w
Lx4

#A2
LEJ(x)

Lx B
L3w
Lx3

#A
L2EJ(x)

Lx2
!n (NM (x)#CM (x))B

L2w
Lx2

!n
LNM (x)

Lx
Lw
Lx

#nKM (x)w#goM (x)
L2w
Lt2

"npM (x, t), (4)

!dAEA(x)
L2u
Lx2

#
LEA(x)

Lx
Lu
LxB#nFM (x)u#goM (x)

L2u
Lt2

"nrN (x, t), (5)
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and relations (3) are expressed by these formulas

/(x, t)"U(ax, t)"
Lw
Lx

,

m (x, t)"
M(ax, t)a

EJ
0

"!EJ
L2w
Lx2

,

t (x, t)"
¹(ax, t)a2

EJ
0

"!A L
Lx

EJB L2w
Lx2

!EJ
L3w
Lx3

!nNM Lw
Lx

,

s(x, t)"
S(ax, t)
EA

0
"EA

Lu
Lx

, (6)

where

EJ"EJ
0
EJ, N"P

0
NM , C"P

0
CM , K"

P
0

a2
KM , o"o

0
oN , P"

P
0

a
pN ,

EA"EA
0
EA, F"

P
0

a2
FM , R"

P
0

a
rN , n"

a2P
0

EJ
0
, g"

a4o
0

EJ
0
, d"

a2EA
0

EJ
0

, (7)

and EJ
0
, EA

0
, o

0
, P

0
are reference quantities.

To simplify the notation, we shall assume consistently EJ, EA, N, C, K, o, F
instead of EJ, EA, NM , CM , KM , oN , FM .

The boundary conditions for the basic types of support of the beam at points $a
are speci"ed in Table 1.

Equations (4) and (5) supplemented with the boundary conditions will constitute
a basis for the solution of the formulated problem.

3. SOLUTION OF THE PROBLEM

To solve equations (4) and (5), the following theorem concerning ordinary
di!erential equations [11] will be used:

Theorem. If a function f satis,es the following n'0-order linear di+erential equation

m
+

m/0

PK
m
(x) f (n~m)(x)"PK (x), (8)

and

Q
m
(x)"

m
+
j/0

(!1)m`jA
n!j
m!jBPK (m~j)

j
(x), m"0, 1,2, n, (9)

and the Chebyshev series coe.cients of functions (Q
0
f )(n), (Q

1
f )(n~1),2,Q

n
f, PK are

de,ned for each integer k, the following identity is true:

n
+

m/0

2n~m
m
+
j/0

b
nmj

(k)a
k~m`2j

[Q
m
(x) f (x)]"

m
+
j/0

b
nnj

(k)a
k~n`2j

[PK (x)], (10)



TABLE 1

Boundary conditions for basic beam support types

Type of support w u t m u s

0 0 0
0 0 0

0 0 0

0 0 0

0 0 0
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where b
nmj

(k) are polynomials of integer variable k

b
nmj

(k)"(!1)jA
m
j B (k!n)

n~m`j
(k!m#2j)(k#j#1)

n~j
(k2!n2)~1,

m"0, 1,2, n; j"0, 1,2, m. (11)

(c)
k
"G

1 for k"0,

c(c#1)(c#2)2(c#k!1) for k"1, 2,2,
(12)

and a
k
[h] is a k-th coe.cient of the expansion of function h(x) into a Chebyshev series

in relation to 1st kind Chebyshev polynomials.

The proof of this theorem can be found in reference [11, pp. 231}234].

Solutions of partial di!erential equations (4) and (5) will be sought in the form of
the following Chebyshev series:

w(x, t)"
=
+
l/0

@a
l
[w]¹

l
(x)"

=
+
l/0

@w
l
(t)¹

l
(x), (13)

u (x, t)"
=
+
l/0

@a
l
[u]¹

l
(x)"

=
+
l/0

@u
l
(t)¹

l
(x), (14)

where

=
+
l/0

@a
l
[ f ]"

1
2

a
0
[ f ]#a

1
[ f ]#a

2
[ f ]#2, (15)

and a
l
[w], a

l
[u] are the sought coe$cients of the expansion of displacements

functions w and u into Chebyshev series, denoted further as w
l
and u

l
respectively.

Since the quoted theorem applies to ordinary di!erential equations in which the
unknown function is a one-variable function, time variable t will be treated as
a parameter.

One starts solving the problem by solving the 4th order equation (4) which
describes the displacement w. In this case, functions PK

m
, PK in equation (8) are
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de"ned by the following formulas:

PK
0
(x)"EJ(x),

PK
1
(x)"2

LEJ(x)
Lx

,

PK
2
(x)"

L2EJ(x)
Lx2

!n(N(x)#C(x)),

PK
3
(x)"!n

LN(x)
Lx

,

PK
4
(x)"nK(x),

PK (x, t)"np (x, t)!go(x)
L2w
Lt2

"p(x, t)!go(x)w( (x, t). (16)

Substituting expressions which describe functions PK
m

into formula (9), gives

Q
0
(x)"EJ(x),

Q
1
(x)"!2

LEJ(x)
Lx

,

Q
2
(x)"

L2EJ(x)
Lx2

!n(N(x)#C(x)),

Q
3
(x)"n

LN(x)
Lx

,

Q
4
(x)"nK(x). (17)

When polynomials b
nmj

(k) are calculated and the relation (see reference [11] 128,
(33)) specifying the value of the kth coe$cient of the expansion of the product of
functions f (x) and g (x) by the following formula:

a
k
[ f (x) ) g(x)]"

1
2

=
+
t/0

@
a
l
[ f ] (a

k~l
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is used, are obtains equations (10) in the following form:
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a
l
[w] are the sought coe$cients of the expansion of the displacement function w,

and a
l
[w( ] are coe$cients of the expansion of function w(
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"
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+
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=
+
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(x), (20)

further denoted as w(
l
.

If the expansions of the functional coe$cients occurring in di!erential equation
(4) are denoted, respectively, by
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then the coe$cients of the expansion of function Q
i
(x) into a Chebyshev series will

have this form
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where the following coe$cient notation convention was adopted: if the lth
coe$cient of the expansion of function f is denoted by a

l
, i.e., a

l
"a

l
[ f ], then

a@
l
stands for the lth coe$cient of the expansion of function f @, i.e., a@

l
"a

l
[ f @].

If the following relation ([11], 124, (17))

a
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1
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is used and this identity (neglecting the proof)
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one obtains an in"nite system of ordinary di!erential equations which can be used
to calculate coe$cients w

l
of the expansion of the displacement function w, given by

formula (13):
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To determine the displacement u, di!erential equation (5) should be solved. To
solve it, we shall use the theorem presented at the beginning of section 3 (see
formulas (8)} (12)). Functions PK

m
, PK in formula (8) and related to them by functions

Q
m

(9) are de"ned in this case by the following formulas:
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The function of the displacement u will be sought in the form of a Chebyshev series
de"ned by formula (14). If one treats variable t as a parameter, having calculated
coe$cients b

nmj
(k) de"ned by formula (11) and applied relation (18), one gets
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If functions EA(x), F(x), o(x), r(x, t) are expanded into Chebyshev series
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and similar transformation as in the case of equation (4) are applied, the following
in"nite system of ordinary di!erential equations, enabling the determination of
coe$cients u

l
, will be obtained:
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So far no boundary conditions have been taken into account. The conditions
follow from the type of support at points $1 (beam-ends) and for basic modes of
support they are described in Table 1. To describe them, formulas (6) will be used,
expansions of functions EJ(x), N(x), EA(x) into Chebyshev series (formulas (21) and
(29)) and the following relations ([11] 48, (14), (16)):

¹ (m)
n

(1)"G
1 for m"0,

n
(2m!1)!!

m~1
<

k/~m`1

(n#k) for m'0.
(31)

¹ (m)
n

(!1)"(!1)n~m¹(m)
n

(1). (32)

To determine the values of the cross-sectional forces de"ned in formula (6), at
points $1, it is necessary to calculate functions EJ, LEJ/Lx, N, EA at these points.
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The values of Chebyshev polynomials and their derivatives (m"0, 1, 2, 3) at points
$1, calculated from formulas (28) and (29) are

¹
n
(1)"1, ¹

n
(!1)"(!1)n,

¹@
n
(1)"n2, ¹@

n
(!1)"!(!1)nn2,

¹A
n
(1)"n2 (n2!1)/3, ¹A

n
(!1)"(!1)nn2(n2!1)/3,

¹A@
n

(1)"n2 (n2!1)(n2!4)/15, ¹A@
n

(!1)"!(!1)nn2 (n2!1)(n2!4)/15.

(33)

If one substitutes them into the expansions of the functions EJ, LEJ/Lx, N, EA, one
obtains

EJ(#1)"EJ
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=
+
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@e
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¹
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(1)"
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+
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@e
l
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EJ(!1)"EJ
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"
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+
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@e
l
¹
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(!1)"

=
+
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@(!1)le
l
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N(#1)"N
`
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+
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@n
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¹

l
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+
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@n
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N(!1)"N
~
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=
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@n
l
¹

l
(!1)"

=
+
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@(!1)lm
l
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Lx K
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(!1)"!
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=
+
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¹

l
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@(!1)ld
l
. (34)

If formulas (6) and the calculated values of the functions (33) and (34) are used,
relations required to de"ne the boundary conditions will be obtained. These
relations bound with the transverse vibration problem and the longitudinal
vibration problem, respectively, have the following form:

w(#1, t)"
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a
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+
l/0

@w
l
,
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=(!a, t)
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"w
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@(!1)lw
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,

/(#1, t)"'(#a, t)"/
`
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=
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@l2 w
l
,
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/(!1, t)"'(!a, t)"/
~
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=
+
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l
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M(#a, t)a
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0
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`

1
3

=
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l
, (35)
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=
+
l/0
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. (36)

In in"nite systems of equations (25) and (30), depending on the order of
di!erential equation n to which they apply, the "rst n equations for
k"0, 1,2, n!1 are satis"ed as regards the identity. These equations are replaced
by the boundary conditions de"ning equations.

This method, consisting in the search for a displacement function in the form of
a Chebyshev series and its application to the solution of the partial di!erential
equations of the presented theorem, leads to an in"nite system of ordinary di!eren-
tial equations and in the case of stationary problems, to an in"nite system of
algebraic equations.

In"nite system of equations can be presented in the following matrix form:

C
A

pp
A

pr
A A DC

w
p

w D#C
0 0

B B D C
wK
p

wK D"C
C

p
C D , (37)
rp rr r rp rr r r
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or after multiplication, in the form

A
pp

w
p
#A

pr
w
r
"C

p
,

A
rp

w
p
#A

rr
w

r
#B

rp
wK
p
#B

rr
wK

r
"C

r
, (38)

where submatrices A
pp

, A
pr

have dimensions n]n and n]R(n"4 or 2),
respectively, and their elements are coe$cients related to the boundary conditions;
submatrices A

rp
, A

rr
and B

rp
, B

rr
are matrices of the coe$cients occurring in

equations (25) or (30), w
p
"[w

0
,2, w

n~1
]T,w

r
"[w

n
, w

n`1
, w

n`2
,2]T; and

vectors C
p
, C

r
de"ne the boundary conditions and the coe$cients associated with

an external load.
From equation (38), if det A

pp
O0 (det A

pp
"0 for a geometrically variable

system), one obtains

w
p
"!A~1

pp
A

pr
w

r
#A~1

pp
C

p
, (39)

If equation (39) is substituted into equation (38)
2
, then
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A

pr
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rp
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p
. (40)

In the case of the eigenproblem when C
r
"C

p
"0 and wK

r
"!u2w

r
, matrix

equation (37) assumes this form

[(A
rr
!A

rp
A~1

pp
A

pr
)!u2(B

rr
!B

rp
A~1

pp
A

pr
)]w

r
"0, (41)

4. NUMERICAL EXAMPLES

To illustrate the method better, consider the eigenproblem for bars shown in
Figures 2 and 3. The presented examples come from references [2} 4].

The other parameters of the problem (o
V
}is mass per unit of volume) are

E"2)068929]1011 N/m2(30]106 lb/in2),

o
V
"7845)4494 kg/m3(0)00073386 lb s2/in4).
Figure 2. A simply supported beam * example 1.



Figure 3. A cantilever beam * example 2.
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If the following relations ([11] 25, (13))
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are used to expand the beam's geometrical and strength characteristics into
Chebyshev series, which give
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where c
0
"(h

1
#h

2
)/2"4)7625, c

1
"(h

2
!h

1
)/2"0)9525. After substituting the

numerical values and applying transformations one obtains the following
Chebyshev expansions:
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#0)9460912335 ¹

3D]102 Nm2,

EA(x)"C
1
2
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1
2
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0
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1D kg/m. (44)
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The boundary conditions required to solve the problem are as follows:
(a) for the beam in Figure 2
z transverse vibration problem z longitudinal vibration problem

w(!1, t)"0,

m(!1, t)"0, s(!1, t)"0,

w(#1, t)"0, u(#1, t)"0,

m(#1, t)"0,

(b) for the beam in Figure 3
z transverse vibration problem z longitudinal vibration problem

t(!1, t)"0,

m(!1, t)"0, s(!1, t)"0,

w(#1, t)"0, u(#1, t)"0.

/(#1, t)"0.

As it has already been mentioned, the in"nite system of di!erential equations for
the eigenproblem becomes a system of algebraic equations. To solve it, it will be
limited to a "nite system. Then the displacement functions are de"ned by "nite
sums of the Chebyshev series

w"

lw
+
l/0

@w
l
¹
l
(x) ,

u"
lw
+
l/0

@u
l
¹
l
(x) (45)

Testing the convergence of the solutions, the system was solved for ever larger
dimension lw of the approximation base (formula (45)).

The obtained eigenfrequencies for transverse and longitudinal vibrations u
i
and

the "rst six eigenfunctions wJ
i

are presented for the simply supported beam in
Tables 2 and 3 and Figures 4 and 5, and for the cantilever beam, in Table 4 and
Figure 6 (for cantilever beam only eigenfrequencies and eigenfunctions for trans-
verse vibration are presented since the longitudinal eigenfrequencies and the
eigenfunctions for the cantilever beam are the same as for the simply supported
beam).

The occurrence of eigenfrequencies with complex values may be a little surpris-
ing. One should bear in mind, however, that the matrix of the system-of-equations
coe$cients is not symmetric (symmetry of matrix is a su$cient condition for
obtaining real eigenvalues). Such a matrix can be obtained by other solution
methods, e.g., the "nite element method. One should also bear in mind that
although higher eigenfrequencies are real numbers, the values calculated at a
limited approximation base can di!er signi"cantly from the actual values.

The transverse eigenfrequency values calculated for the system shown in Figure 2
have been compared with the results reported in references [2, 4] and with the



TABLE 2

Eigenfrequencies for simply supported beam 2 transverse vibration

lw u
1

u
2

u
3

u
4

u
5

u
6

u
7

10 188,45 757,90 1731,62 3020,90 4261,61!
948,149 i

4261,61#
948,149 i

11 188,44 758,47 1701,19 3246,87 4228,18 5900,53!
1929,02 i

5900,53#
1929,02 i

12 188,44 757,97 1706,07 3005,56 5316,36!
862,489 i

5316,36#
862,489 i

7946,19!
3203,25 i

13 188,44 757,97 1703,86 3029,82 4626,08 7142,18!
1823,16 i

7142,18#
1823,16 i

14 188,44 757,99 1703,59 3027,54 4724,00 6473,88 9265,44!
2995,34 i

15 188,44 757,99 1703,98 3025,60 4729,70 6809,61 8423,55
16 188,44 757,99 1703,99 3027,90 4722,50 6806,43 9655,41
17 188,44 757,99 1703,97 3028,01 4730,26 6793,73 9219,68
18 188,44 757,99 1703,97 3027,74 4731,03 6811,75 9247,68

lw u
8

u
9

u
10

u
11

u
12

u
13

u
14

12 7946,19#
3203,25 i

13 10440,9!
4833,81 i

10440,9#
4833,81 i

14 9265,44#
2995,34 i

13448,5!
6884,73 i

13448,5#
6884,73 i

15 11751,2!
4475,23 i

11751,2#
4475,23 i

17042,1!
9418,89 i

17042,1#
9418,89 i

16 10038,00 14662,6!
6314,38 i

14662,6#
6314,38 i

21300,3!
12501,3 i

21300,3#
12501,3 i

17 12289,3!
1278,51 i

12289,3#
1278,51 i

18059,1!
8557,13 i

18059,1#
8557,13 i

26306,1!
16200,9 i

26306,1#
16200,9 i

18 11836,30 15001,3!
2341,42 i

15001,3#
2341,42 i

21999,9!
11249,3 i

21999,9#
11249,3 i

32147,4!
20590,6 i

32147,4#
20590,6 i
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frequency values obtained by the "nite element method for the division of the
system into 6 Euler-type bar elements (elements with four degrees-of-freedom). The
values have been compiled in Table 5.

5. RECAPITULATION

The obtained results prove that the method is correct and useful for the solution
of dynamic problems of non-prismatic beams. The presented numerical example
shows agreement with results reported by other authors [2, 4] and the obtained
results are satisfactorily accurate. One should note, however, that the accuracy
decreases here for higher frequencies and eigenforms. One of the consequences of
decreased accuracy is that the boundary conditions are not ful"lled in the case of



TABLE 3

Eigenfrequencies for simply supported beam 2 longitudinal vibration

lw u
1

u
2

u
3

u
4

u
5

u
6

u
7

10 1824,94 5105,73 8449,31 11876,50 16204,00 17541,40 20737,40
11 1824,94 5105,83 8453,83 11787,60 15299,80 20460,2!

1269,71 i
20460,2#
1269,71 i

12 1824,94 5105,82 8455,38 11809,10 15097,10 18727,80 24200,3!
2297,12 i

13 1824,94 5105,82 8455,19 11818,00 15159,00 18365,30 22148,10
14 1824,94 5105,82 8455,14 11816,40 15190,20 18495,90 21590,80
15 1824,94 5105,82 8455,14 11815,80 15182,80 18578,30 21813,30
16 1824,94 5105,82 8455,14 11815,90 15179,90 18554,20 21996,10

lw u
8

u
9

u
10

u
11

u
12

u
13

u
14

10 30268,30
11 24170,70 35941,80
12 24200,3#

2297,12 i
27842,90 42121,80

13 28125,3!
3349,27 i

28125,3#
3349,27 i

31824,70 48811,20

14 25569,70 32269,9!
4468,27 i

32269,9#
4468,27 i

36141,80 56011,40

15 24781,60 29022,40 36661,6!
5653,71 i

36661,6#
5653,71 i

40794,10 63722,90

16 25105,10 27950,20 32544,90 41317,7!
6903,58 i

41317,7#
6903,58 i

45775,90 71945,80

Figure 4. Eigenforms of simply supported beam * transverse vibration.

Figure 5. Eigenforms of simply supported beam * longitudinal vibration.
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TABLE 4

Eigenfrequencies for cantilever beam 2 transverse vibration

lw u
1

u
2

u
3

u
4

u
5

u
6

u
7

10 85,72 456,16 1179,56 2149,57 4536,25 5728,92
11 85,67 456,30 1220,33 2195,59 3373,98 7316,91!

818,159 i
7316,91#
818,159 i

12 85,66 455,97 1222,09 2406,90 3386,53 4827,23 10019,4!
1831,19 i

13 85,66 455,84 1216,82 2392,63 4325,42!
354,473 i

4325,42#
354,473 i

6532,21

14 85,66 455,81 1215,52 2353,13 4041,66 5912,29!
1150,24 i

5912,29#
1150,24 i

15 85,66 455,81 1215,51 2347,21 3858,32 6288,82 7584,03!
2072,03 i

16 85,66 455,80 1215,55 2349,51 3841,73 5704,38 9070,20
17 85,66 455,80 1215,55 2350,27 3859,93 5665,95 7856,17
18 85,66 455,80 1215,55 2350,21 3864,60 5746,44 7757,53

lw. u
8

u
9

u
10

u
11

u
12

u
13

u
14

12 10019,4#
1831,19 i

13 13329,6!
3012,78 i

13329,6#
3012,78 i

14 8528,15 17347,6!
4466,76 i

17347,6#
4466,76 i

15 7584,03#
2072,03 i

10824,10 22180,5!
6250,55 i

22180,5#
6250,55 i

16 9403,2!
3355,44 i

9403,2#
3355,44 i

13395,80 27941,8!
8415,1 i

27941,8#
8415,1 i

17 12255,60 11504,7!
5020,26 i

11504,7#
5020,26 i

16195,80 34750,7!
11011,6 i

34750,7#
11011,6 i

18 10296,60 13917,4!
7057,82 i

13917,4#
7057,82 i

16031,90 19107,00 42732,4!
14093,2 i

42732,4#
14093,2 i

Figure 6. Eigenforms of cantilever beam * transverse vibration.
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higher eigenforms. Although the example is limited to a simple scheme, the
proposed method can be used to solve more complex systems such as beams with
more complicated geometry and any distribution of mass and strength parameters,
resting on a two-parameter heterogeneous elastic foundation. Since Chebyshev



TABLE 5

Comparison of results

u
1

u
2

u
3

u
4

u
5

u
6

u
7

u
8

This paper 188,44 757,99 1703,97 3027,75 4729,39 6808,80 9286,04 12103,70
[2] Exact 188,45 758,08 1704,90

[4] 189,12 843,64 2116,50
FEM 189,19 760,55 1715,09 3076,50 4873,81 7607,60 10357,42 14175,95
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polynomials have some of the best approximation properties, it seems that
the proposed method will be particularly useful for solving beams that are complex
in shape. If methods involving expansions into power series (references [7}9])
are applied to such beams, this may lead, because of these methods' inferior
approximation properties, to considerable inaccuracies when the number of terms
in a series is limited. The formulas derived by the author enable the direct solution
of such complex problems.

The application of the proposed method to the determination of exact shape
functions for non-prismatic "nite elements is particularly interesting since this is
only one step away from building up a library of such elements.
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