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The problem of the vibration of a non-prismatic beam resting on a two-
parameter elastic foundation has been solved by applying the approximation by
Chebyshev series. As a result, closed analytical formulas defining the coefficients of
the sought solutions were obtained. The method was used to solve the eigenprob-
lem for a simply supported beam and a cantilever beam. The obtained results were
compared with the results reported by other authors.
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1. INTRODUCTION

Variable cross-section bar systems have been gaining popularity as elements of
contemporary building structures due to the necessity of rational shaping, an
economical design of structures as well as architectonic reasons. Solutions to many
structural analysis problems, including stability problems, can be found in a
monograph by Krynicki and Mazurkiewicz [1]. The authors of this work
considered many complex states of loading. The solutions they found are in
an analytical form. They limited themselves, however, to bars for which the
moment of inertia of the cross-section can be described by the function
J&) =Jg (ui(1 — &) + w&)" n=0,2,3,4. An analytical solution consisting the
expansion of the displacement function into a Fourier series, the calculation of the
kinetic energy and the elastic strain energy and then solving the Lagrange equation
is presented by Heidebrecht in reference [2]. The application of the Fourier series
supplemented with power polynomials to the solution of a broad class of problems
described by linear variable-coefficient differential equations, stemming from, for
example, problems of the vibration of bars with variable cross-section, is presented
in a paper by Gonga Rao and Spyrakos [3]. The stiffness matrix and the inertia
matrix for a beam with a linearly variable height were determined by Gupta [4]
who used them to solve the eigenproblem for a cantilever beam and for a simply
supported beam. Eisenberger [5] determined the rigidity-matrix elements for
several kinds of non-prismatic beams. Eisenberger and Reich [6] applied the finite
element method to the solution of static and dynamic problems, approximating the
displacement of the beam by 3rd degree polynomials. The beam’s rigidity and
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density in the considered problems was described by power series. Formulas for the
determination of the rigidity matrix”s elements for a beam element with variable
axial, torsional and flexural rigidity described by power series were presented by
Eisenberger in reference [7]. The same polynomial approximation was used by
Klasztorny [ 8] to determine the rigidity matrix and the inertia matrix of Euler- and
Timoshenko-type beam finite elements. Many exemplary problems illustrating
the use of this method were solved in reference [8]. The generalization of the
formulas determined in reference [7], which describe the rigidity and inertia
matrices for variable rigidity and density bars resting on a two-parameter
foundation, can be found in a paper by Glabisz [9], where the problem of the
stability of a non-prismatic rod subjected to non-conservative loads is considered.
Similar to references [7, 8], power series were used to approximate the
displacement functions.

The present paper deals with the problem of the linear vibration of a beam with
variable strength and geometric parameters, resting on a two-parameter, hetero-
geneous elastic foundation [10]. It is assumed that the variable parameters of
the bar, such as flexural and axial rigidity and density, the variable parameters
of the foundation and the load can be represented by a series expansion in
relation to 1st kind Chebyshev polynomials. Using the theorems and relationships
applicable to these polynomials found in the monograph [11], a solution in the
form of a Chebyshev series is found. The coefficients of this solution are defined
by closed analytical formulas. The longitudinal and transverse vibration of the bar
is analyzed. By analogy to the equations, which describe the longitudinal and
flexural motion of the bar, the relations derived for the longitudinal vibration
can be used to determine the flexural vibration. This method was applied to solve,
as an example, the eigenproblem for a simply supported beam and a cantilever
beam. The obtained numerical results were compared with those published in
references [2, 4].

2. FORMULATION OF PROBLEM

A non-prismatic rectilinear Euler beam 2a in length, resting on a two-parameter
elastic foundation, subjected to dynamic normal load P(X,t) and tangent load
R(X,t) (Figure 1) is considered.

The linear, transverse vibration of the beam is described by the following partial
differential equations:

0* o*w 0 ow o*w
W(EJ(X) W) - (N(X) a_X> — C(X) Sz + KEOW(X)
o0 S = P, n
0 oU 0*U
- <EA(X) a_X> + FXOUX) + p(X) 5 = RIX, 1), 2
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Figure 1. A diagram of a typical non-prismatic beam.

where W and U stand, respectively, for the displacements which are perpendicular
and tangent to the beam axis, E is Young’s modulus, 4 and J are the beam’s
cross-sectional area and moment of inertia, p is mass per unit of length, and F(X),
K(X), C(X) are functions describing elastic-foundation reactions.

To define boundary conditions, which follow from the type of support at the
points + a, the relations defining the beam cross-section angular displacement, the
bending moments, the shearing forces and the axial forces will be used:

ow
@(X, t) = 8—X’
oW
M(X.0)= — EJ .
0 W ow
0= _ﬁ<EJW> ~NVax
ou
S(X,t)=EA e (3)

As dimensionless quantities x = X/a, w = W /a, u = U/a are introduced, equations
(1) and (2) assume the following form:

— ot OEJ 0? 0’EJ - = 0* ON(x) 0
0+ (250 25 (R st ) 2 a0

2

+ nK(x)w + gp(x) 53 = np(x. 1), “4)

—  *u  O0EA(x)? _ _ . 0? _
~ d<EA(x) ELZ’ + % a—Z) + nF(x)u + gp(x) g’; = ni(x, 1), (5)
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and relations (3) are expressed by these formulas

ow
¢(xa [) - (D(axa t) - Ea
_ Max, 1) —0%w
m(x, t) = Ele  — EJa s
(x. 1) = T(ax, t)a2_ EE_J azW—E_JaSW—nZ\_I ow
x’ EJo ox U)o T e ox’
_ S(ax,t)  ——ou
S(X, t) EA() - EA aa (6)

where
N ~ PO 72 — Po_
EJ:EJOE'Jﬂ N=P0Na C=P0Ca KZEZKa P = Pop, P=Zp:

L B 2 4 2
EA = EAEA, Fz%F, R=Pos P _@po,_aEAo

a EJ(), EJO’ o EJ() ’ (7)

and EJo, EAo, po, Po are reference quantities.

To simplify the notation, we shall assume consistently EJ, EA, N, C, K, p, F
instead of EJ, EA, N, C, K, p, F.

The boundary conditions for the basic types of support of the beam at points +a
are specified in Table 1.

Equations (4) and (5) supplemented with the boundary conditions will constitute
a basis for the solution of the formulated problem.

3. SOLUTION OF THE PROBLEM

To solve equations (4) and (5), the following theorem concerning ordinary
differential equations [11] will be used:

Theorem. Ifafunction fsatisfies the following n > 0-order linear differential equation

iﬁmwwmm=ﬁm, ®)

and

=Z(—chljy“”ﬂam=ame, ©)
j=0 m-—j

and the Chebyshev series coefficients of functions (Qof)™, (Q1 £)" ™Y, ..., 0. f. P are
defined for each integer k, the following identity is true:

Zi: nmj(k)ak—m+2j[Qm(x)f(x)] = i b,,nj(k)ak_,,+2j[13(X)], (10)

0 Jj=0

Ms

J
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TABLE 1

Boundary conditions for basic beam support types

Type of support w @ t m u s
—_ 0 0 0
£ 0 0 0
A 0 0 0
— 0
— 0

where b,,;(k) are polynomials of integer variable k

bumj(k) = (— 1) (?)(k — My—mrjk —m + 2)(k +j + 1), (k> —n?) "1,

m=0,1,...,n, j=0,1,...,m. (11)
1 for k=0,

(h = (12)
cle+Dc+2)...(c+k—1) for k=1,2,...,

and a, [h] is a k-th coefficient of the expansion of function h(x) into a Chebyshev series
in relation to 1st kind Chebyshev polynomials.
The proof of this theorem can be found in reference [11, pp. 231-234].

Solutions of partial differential equations (4) and (5) will be sought in the form of
the following Chebyshev series:

o0

W ) = S aw] Tix) - Y (Tico) (13)
=0 =
uee )= Y all T = Y u®) T, (14)
=0 =0
where
>, 1
Yalf1=wlf1+al1+al]+ - (15)

and a;[w], q;[u] are the sought coefficients of the expansion of displacements
functions w and u into Chebyshev series, denoted further as w; and u, respectively.
Since the quoted theorem applies to ordinary differential equations in which the
unknown function is a one-variable function, time variable ¢ will be treated as
a parameter.
One starts solving the problem by solving the 4th order equation (4) which
describes the displacement w. In this case, functions P,, P in equation (8) are
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defined by the following formulas:
Po(x) = EJ(x),

82
- — gp()(x, 1) (16)

P, t) = np(x, ) = gp(¥) 55 = p(x, 1)
Substituting expressions which describe functions P,, into formula (9), gives
Qo(x) = EJ(x),

0, = — 2%

(17)

When polynomials b,,,;(k) are calculated and the relation (see reference [11] 128
(33)) specifying the value of the kth coefficient of the expansion of the product of

functions f(x) and g(x) by the following formula

!

i [f1(a—1[g] + ar+.:[g]) (18)

l\)l»—

a[ f(x)-g(x)] =
is used, are obtains equations (10) in the following form

8(k* —9)(k* — 4)(k* — Dk ilal[wj {a-1[Q0] + ax+1[Q0]}
=0

L a02 — 9K — B — 1) Y alw] {a—1-1[01]
1=0

+ ax+1-1[01] — ax—141[01] — ar1+1[Q11}
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2k — )k — 4) Y aulwl {(k + (@1 2[0:] + a1 2[05])

=0

— 2k(ar-1[Q2] + ar+ 1[02]) + (k — D)(ak—112[Q2] + ax11+2[Q2])}

+ (k* = 9) Z,al[W] {(k + 1)(k + 2)(ax-1-3[03] + ax+1-3[Q3])

— 3k(k — 1)(k + 2)(ax-1-1[03] + ak+1+1[Q3] + 3(k + 1)(k — 2)(a-1+1[ Q3]
+ a+1+1[03]) — 3k(k — 1)(k — 2)(ax-1+3[Q3] + ak+l+3[Q3])}

+ %liolaz[wj {(k + 1)(k 4+ 2)(k + 3)(ax—1-4[ Q4] + ar+1-4[Q4])

— Ak + 3)(k* — 4)(@r-1-2[Qa] + arr1-2[Qa]) + 6k(k* — 9)(ax—1[ Q4]

+ a4 1[Q4]) — 4k — 3)(k* — 4 (ax-1+2[Q4] + drs142[Q4])

+ (k= 1)(k = 2)(k = 3)(@k-1+4[Qa] + ar+1+4[Qa])}

= n{(k + 1)(k + 2)(k + 3)ax—4[p] — 4(k + 3)(k* — 4)ac_>[p]

+ 6k(k? — 9ar[p] — 4(k — 3)(k* — 4 ar+,[p] + (k — Dk — 2)(k — )ar+4[p]}

39 Y@l (k4 D0+ 0k + e a[p] + @i alp)
=0

— 4k + 3)(k* — 4)(ax—1-2[ p] + ax+1-20p]) + 6k(k?* — 9)(ax—i[ p] + ar+i[p])
— 4k — 3)(k* — A)(ax—1+20p] + ax+1+20p])
+ (k= Dk — 2)(k = 3)(ax—1+4[p] + @xr1+4Lp]}, k=0,1,2,3,.... (19)

a;[w] are the sought coeflicients of the expansion of the displacement function w,
and a;[w] are coefficients of the expansion of function w

82w(

= Z al[w]T(x Z wi(t (20)
=0 =0
further denoted as w,.
If the expansions of the functional coefficients occurring in differential equation
(4) are denoted, respectively, by

0= YaTix, N = Y'mT)
C = YaT(x), K=Y kT

P = YaTix). p.0)= Y P T 21
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then the coefficients of the expansion of function Qx) into a Chebyshev series will
have this form

a[Qo] = a[EJ] = e,

alQ.]= az_ - 2%} = —2e),
[ A2
alQ:] =q aa—Ej —n(N + C)] =e" —n(n + ¢),
B X
[ 0
alQs]=q _n a—ﬂ = nnj,
a[Q4] = a[K] =k, (22)

where the following coefficient notation convention was adopted: if the Ith
coefficient of the expansion of function f is denoted by a;, i.e., @; = a;[ f], then
a; stands for the Ith coefficient of the expansion of function f”, i.e., a; = a;[ f'].

If the following relation ([11], 124, (17))

1
al=2_l(a§—1 —daj+q), 1#0, (23)

is used and this identity (neglecting the proof)
(k+ )k —=1—1)e—y— 1 +(k+ 1)k +1—1)egs;-1
—(k =1k =1+ Det—r41 — (k= Dk + [+ 1egri41

1—1
=2k + 1)k —1— 1)k — Der1 — 41 Y (k — I+ 2f)ex—1+2;
=1

+2(k — Dk + 1+ 1)(k + Degrs (24)

one obtains an infinite system of ordinary differential equations which can be used
to calculate coefficients w; of the expansion of the displacement function w, given by
formula (13):

-1

80 — 9K — DILk + DI = Depmy =2 Y (k — 1+ 2)ex—r42

s

l

0
+ (k — (I — Dewy ] — 2n(k> — 9k + 1)(k + 2) (- -2 — My 1-2)
— 2(k* — &)y + mqq) + (k — 1) (k — 2) (=142 — Mis142)

—2n(k* — 9)(k* — 4)[(k + 1)(cx—1-2 + Crv1—2) — 2k(ch—1 + Cx+1)
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+ (k= D(ck—1+2 + ckri+2)] + %n[(k + D(k + 2)(k + 3)(ki—1—4 + Ki+1-4)

—4(k + 3)(k* — 4)(ki—1—2 + kv 1-2) + 6k(k* — 9)(ki—; — ky+1)
— 4(k—3)(k* —4) (k- 142 +kir1+2) F(k + 1) (k+2)(k+3) (k1 2+ ki s 14 2) ]} Wy

+%g {(k+1)(k+2)(k+3) (gk—1-a+ gr+1-a)— 4k +3) (k> — ) (gk—1-2 + Gr+1-2)

+ 6k(k?* = 9)(gi—1 — g+1) — 4(k = 3)(k? — A)(Gi—1+2 + Gr+1+2)
+ (k + Dk + 2)(k + 3)(gr—1+4 + Grr1+4)} Wi

= n{(k + Dk + 2)(k + 3)pr_a — 4(k + 3)(k* — A p_» + 6k(k* — 9y

— 4k — 3) (k2 — A)prsa + (k + 1)k + 2)(k + 3)pesan k=0,1,2,3,.... (25

To determine the displacement u, differential equation (5) should be solved. To
solve it, we shall use the theorem presented at the beginning of section 3 (see
formulas (8)-(12)). Functions P,,, P in formula (8) and related to them by functions
Q.. (9) are defined in this case by the following formulas:

Po(x) = — d EA(x),

OEA(x)
ox

P(x)= —d

Py(x) = nF(x),

0*u

P(X, t) = nr(xa t) ) W = nr(x, t) - gu» (26)

Qo(x) = — d EA(x),

_ OEA(x)
0:(9) = d =2,
02(x) = nF(x). 27

The function of the displacement u will be sought in the form of a Chebyshev series
defined by formula (14). If one treats variable t as a parameter, having calculated
coefficients b,,;(k) defined by formula (11) and applied relation (18), one gets

202 — Dk Y arlu] tax—1[06] + axs 1 [Qo]}
=0

(o}

+ (k* — 1) Z,al[u] {ar—1-1[01] + ax+1-1[01] + ar—1+1[01] + ak+1 41011}

=0
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+ 3 Z au] {(k + D)(ax—1-2[Q>] + ax+1-2[05]1) — 2k(ar-i[Q>] + ar+:[Q>])
+ (k — D(ax-142002] + ak114200:1)} = n{(k + Dag_,[r] — 2ka[r]
(k= Vool — 59 Y alid {6+ D r2[p] + i aLp)

1=0

— 2k(ax—1[p] + ax:[p]) + (k — D)(ax—1+2[p] + ax 120 p])}- (28)

If functions EA(x), F(x), p(x), r(x, t) are expanded into Chebyshev series

i d; T(x), F(x)= if,T,
0= S aTx, ron=Sr0OT (29)

=0

and similar transformation as in the case of equation (4) are applied, the following
infinite system of ordinary differential equations, enabling the determination of
coefficients u;, will be obtained:

M8

(= 2d(k* — Dk(dx— + div) — 2d(K* — 1) (dy—; + dy+1)

l

0

1
+§ nl(k+ D(fici—2 +fris1=2) = 2k(fici +fied) + (k= D(fim142 +frv1+2) 1}

1 &, .
+§ g Ak 4+ D(gk-1-2+ Gr+1-2)— 2k(gr—1 + gr+1) + (k— 1) G142+ Gr+1+2)}ils
1=0

=k + 1)y — 2k 7+ (k — 1) Feso. (30)

So far no boundary conditions have been taken into account. The conditions
follow from the type of support at points +1 (beam-ends) and for basic modes of
support they are described in Table 1. To describe them, formulas (6) will be used,
expansions of functions EJ(x), N(x), EA(x) into Chebyshev series (formulas (21) and
(29)) and the following relations ([11] 48, (14), (16)):

1 for m=0,

Tim(1) = n m=1 (31)
—_ n+k) for m>0.
Gm i, LI, ok

(= 1) = (= 1)""T™(1). (32)

To determine the values of the cross-sectional forces defined in formula (6), at
points =+ 1, it is necessary to calculate functions EJ, 0EJ/0x, N, EA at these points.
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The values of Chebyshev polynomials and their derivatives (m = 0, 1, 2, 3) at points
+1, calculated from formulas (28) and (29) are

T,(1) =1, T.(=1)=(=1)"
T,(1) =n?, T,(—=1)=—(-1mn
T(1) = n*(n* — 1)/3, Th(— 1) =(—1"n*@n*—1)3,

Ty (1) =n*(n* — 1)(n* — 4/15, Ty (—1)=—(— 1)'n(n* — 1)(n* — 4)/15.
(33)

If one substitutes them into the expansions of the functions EJ, 0EJ/0x, N, EA, one
obtains

EJ(+1)=EJ; = Y'eTi(1) = Ye,
=0

1=0

EJ(—1)=EJ_ = Z eT(—1)= i’(—l)’el,
N(+ 1) =N, = YnTdl) = Y'n,
N1 =N_= S'nT(—1)= Y'(—1)m,

I=0 1=0

8

aE—J =EJ, = Z/el Tl(l) = z/ lzel,
0X |x=11 1=0 =0
OEJ S y

A =EJ. = Zele(—1)=— Z(—l)llzel,

0X |x=—1 1=0 1=0

EA(+1)=EA, = Y dT(1)= Y d,
1=0 1=0

EA(—1)=EBA_ = Y 'd,T(-1)= Y '(—1)d,. (34)

1=0 1=0

If formulas (6) and the calculated values of the functions (33) and (34) are used,
relations required to define the boundary conditions will be obtained. These
relations bound with the transverse vibration problem and the longitudinal
vibration problem, respectively, have the following form:

w t iy
W(+1,t)=(+7a’)=w+ =Y w,
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a0

P10 =0(—a,0)=¢_=— Y (=1)1*w,

1=

o

M t 1&,
ma1, g MEata o gyl Y1212 = Dw, (35)
EJo 3%
M _
m(—1, t)=%=m_ __ps L Z )M = Dw,
_T(+ata®> 2,1, )
t((+1,0)= EJ, =t, = l;Ol 3(l 1)EJ',

1
+B(lz — 1)([2 — 4)EJ+ + nN+:|Wl,

T(— a, t)a °°, 1
)= — (P —1)EJ-
t(—1,1) £ l; [ 3(l 1)EJ
1
—I—B(l2 —1)(I* —4)EJ_ + nN_}wl
and
M(+1,t)=M:u+ _ Z’ul,
a 1=0
u—1,0 =220 Sy,
a 1=0
_S(+a, t)
s(+1,1) = A, Sy _EA+zZol u,
s(—1,1) = S(E—j()t) s.=—EA_ Y (—1)1?u,. (36)
=0

In infinite systems of equations (25) and (30), depending on the order of
differential equation n to which they apply, the first n equations for
k=0,1,...,n — 1 are satisfied as regards the identity. These equations are replaced
by the boundary conditions defining equations.

This method, consisting in the search for a displacement function in the form of
a Chebyshev series and its application to the solution of the partial differential
equations of the presented theorem, leads to an infinite system of ordinary differen-
tial equations and in the case of stationary problems, to an infinite system of
algebraic equations.

Infinite system of equations can be presented in the following matrix form:

o v T o A
Arp Arr W, Brp Brr W, Cr
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or after multiplication, in the form
AW, +A,w, =C,
AW, + A,w, + B,,w, + B,w, =C, (38)

where submatrices A,,, A, have dimensions nxn and nx o(n=4 or 2)
respectively, and their elements are coefficients related to the boundary conditions;
submatrices A,,, A,, and B,,, B,, are matrices of the coefficients occurring in
equations (25) or (30), w, =[wo, ..., Wy—11"W, = [Wp, Wpt1, Wpsa,...]1% and
vectors C,, C, define the boundary conditions and the coefficients associated with
an external load.

From equation (38), if det A,, # 0 (det A,, =0 for a geometrically variable
system), one obtains

Wy =— Ap—pl Apw, + Ap_pl Cp (39)
If equation (39) is substituted into equation (38),, then
(Arr _ArpAl;pl Apr)wr + (Brr_Brp[s[;p1 Apr)wr = Cr - (Arp + Brp)AI;pl Cp’ (40)

In the case of the eigenproblem when C,=C,=0 and W, = — w’w,, matrix
equation (37) assumes this form

[(Arr - ArpAp7p1 Apr) - wz(Brr - lsr'p‘Al;p1 Apr):l W, = O: (41)

4. NUMERICAL EXAMPLES

To illustrate the method better, consider the eigenproblem for bars shown in
Figures 2 and 3. The presented examples come from references [2-4].
The other parameters of the problem (py—is mass per unit of volume) are

E = 2:068929 x 10' N/m2(30 x 10° Ib/in2),

py = 1845-4494 kg/m?>(0-00073386 1b s?/in*).

Ah |

I | a=0381 m(15in)

W
h, hx) AN \ , b=00dmin
A .
i \ 2 By =003810m (1.5 in)
N

hy = 0-05715 m (2.25 in)

R

a | . |

| |
Figure 2. A simply supported beam — example 1.
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b
Ah I |
L o a=0381 m(15in)
hy hix) "2 x\‘ . b=00A4min
I .
i . \ > j,=003810 m (L5 in)
‘ %x\ h, = 005715 m (2.25 in)

| a | a |

Figure 3. A cantilever beam — example 2.

If the following relations ([11] 25, (13))

To(x) =1,
1
Tu(x) Tu(x) = 5 LTn—n(X) + Tusa(x)], (42)

are used to expand the beam’s geometrical and strength characteristics into
Chebyshev series, which give

h(x) = coTo(x) + ¢y Ty(x),

A(x) = beoTo(x) + bey Ty (x),
J(x) = i bh® = i bl|cd+ é coc? |To(x) + | 3cdey + é c3 )Ty (x)
12 12 2 4

3 1
+ 5 coci Ta(x) + I ciTs (X)} (43)

where ¢o = (hy + hy)/2 = 47625, ¢, = (h, — hy)/2 = 0:9525. After substituting the
numerical values and applying transformations one obtains the following
Chebyshev expansions:

1
EJ(x) = [5 1002:8567098 T, + 286:66564444 T;
+ 28:38273707 T, + 0-9460912335 T3] x 102 N'm?,
1
EA(x) = [E 500:5463376 T, + 50-05463376 Tl} x 10°N,

1
p(x) = [5- 18-980888801 T, + 1-898088801 TIJ kg/m. (44)
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The boundary conditions required to solve the problem are as follows:
(a) for the beam in Figure 2

* transverse vibration problem ¢ longitudinal vibration problem
w(—1,t)=0,
m(—1,t) =0, s(—1,0)=0,
w(+1,1)=0, u(+ 1,1 =0,
m(+ 1,t) =0,

(b) for the beam in Figure 3

* transverse vibration problem * longitudinal vibration problem
t(—1,1=0,
m(—1,t)=0, s(—1,1)=0,
w(+ 1,1) =0, u(+ 1,t)=0.
d(+1,t)=0.

As it has already been mentioned, the infinite system of differential equations for
the eigenproblem becomes a system of algebraic equations. To solve it, it will be
limited to a finite system. Then the displacement functions are defined by finite
sums of the Chebyshev series

Iw

w = Z /WlTl(x)a

1=0

Iw

u= "y "uT(x) (45)
=0
Testing the convergence of the solutions, the system was solved for ever larger
dimension [w of the approximation base (formula (45)).

The obtained eigenfrequencies for transverse and longitudinal vibrations w; and
the first six eigenfunctions w; are presented for the simply supported beam in
Tables 2 and 3 and Figures 4 and 5, and for the cantilever beam, in Table 4 and
Figure 6 (for cantilever beam only eigenfrequencies and eigenfunctions for trans-
verse vibration are presented since the longitudinal eigenfrequencies and the
eigenfunctions for the cantilever beam are the same as for the simply supported
beam).

The occurrence of eigenfrequencies with complex values may be a little surpris-
ing. One should bear in mind, however, that the matrix of the system-of-equations
coefficients is not symmetric (symmetry of matrix is a sufficient condition for
obtaining real eigenvalues). Such a matrix can be obtained by other solution
methods, e.g., the finite element method. One should also bear in mind that
although higher eigenfrequencies are real numbers, the values calculated at a
limited approximation base can differ significantly from the actual values.

The transverse eigenfrequency values calculated for the system shown in Figure 2
have been compared with the results reported in references [2, 4] and with the
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TABLE 2

Eigenfrequencies for simply supported beam — transverse vibration

Iw W, W, OR Wy Ws We w5
10 188,45 757,90 1731,62  3020,90 4261,61— 4261,61 +
948,1491 948,1491
11 188,44 758,47 1701,19  3246,87  4228,18 5900,53— 5900,53 +
1929,021 1929,021
12 188,44 757,97 1706,07  3005,56 5316,36— 5316,36 + 7946,19—
862,4891 862,4891 3203,25i
13 188,44 757,97 1703,86  3029,82  4626,08 7142,18— 7142,18 +
1823,161 1823,161
14 188,44 757,99 1703,59  3027,54 472400 6473,88 926544 —
2995,341
15 188,44 757,99 1703,98  3025,60 4729,70  6809,61  8423,55
16 188,44 757,99 1703,99 302790 4722,50 680643  9655,41
17 188,44 757,99 1703,97  3028,01  4730,26  6793,73  9219,68
18 188,44 757,99 1703,97  3027,74 4731,03  6811,75  9247,68
Iw Wg W9 W10 W1y Wiz W3 W14
12 7946,19 +
3203,251
13 10440,9— 10440,9 +
4833,811 4833,811
14 9265,44 + 13448,5— 13448,5+
2995341 6884,731 6884,731
15 11751,2— 11751,2 4+ 17042,1— 17042,1 +
4475231 4475,231 9418,891 9418,891
16 10038,00 14662,6— 14662,6 + 21300,3— 21300,3 +
6314,381 6314,381 12501,31 12501,31
17 12289,3— 12289,3 + 18059,1— 18059,1 + 26306,1 — 26306,1 +
1278,511 1278,511 8557,131 8557,131 16200,91 16200,91
18 11836,30 15001,3— 15001,3 + 21999,9— 21999.9 + 32147.4— 321474 +
2341,421 2341421 11249,31 1124931 20590,61 20590,61

frequency values obtained by the finite element method for the division of the
system into 6 Euler-type bar elements (elements with four degrees-of-freedom). The
values have been compiled in Table 5.

5. RECAPITULATION

The obtained results prove that the method is correct and useful for the solution
of dynamic problems of non-prismatic beams. The presented numerical example
shows agreement with results reported by other authors [2, 4] and the obtained
results are satisfactorily accurate. One should note, however, that the accuracy
decreases here for higher frequencies and eigenforms. One of the consequences of
decreased accuracy is that the boundary conditions are not fulfilled in the case of
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Eigenfrequencies for simply supported beam — longitudinal vibration

Iw W, W, W5 Wy ws We op
10 182494  5105,73 844931 11876,50 16204,00 17541,40 20737,40
11 182494 510583  8453,83 11787,60 15299,80 20460,2— 20460,2 +
1269,711  1269,711
12 182494  5105,82 845538 11809,10 15097,10 18727,80 24200,3—
2297121
13 182494 510582 845519 11818,00 15159,00 1836530 22148,10
14 182494 510582  8455,14 11816,40 15190,20 1849590 21590,80
15 182494 510582  8455,14 1181580 15182,80 18578,30 21813,30
16 182494  5105,82  8455,14 1181590 1517990 18554,20 21996,10
Iw Wy Wy W10 W1y Wy @3 Wiq
10 30268,30
11 24170,70  35941,80
12 24200,3 + 2784290 42121,80
2297121
13 28125,3— 28125,3+ 3182470 48811,20
3349271 3349,27i
14 25569,70 32269,9— 322699+ 36141,80 56011,40
4468271 4468,271
15 24781,60 29022,40 36661,6— 36661,6+ 40794,10 63722,90
5653,711  5653,711
16 25105,10 27950,20 3254490 41317,7— 41317,74+ 4577590 71945,80
6903,581 6903,581
W,
05 1-0

Figure 4.

Figure 5. Eigenforms of simply supported beam — longitudinal vibration.
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TABLE 4

Eigenfrequencies for cantilever beam — transverse vibration

Iw op W, [OR Wy Ws We w5
10 85,72 456,16 1179,56  2149,57  4536,25 572892
11 85,67 456,30 1220,33  2195,59  3373,98 731691— 731691 +
818,1591 818,1591
12 85,66 45597 1222,09  2406,90 3386,53 4827,23 10019,4—
1831,191
13 85,66 455,84 1216,82  2392,63 432542— 432542+ 653221
3544731 354,4731
14 85,66 455,81 1215,52  2353,13  4041,66 5912,29— 5912,29 +
1150,241 1150,241
15 85,66 455,81 1215,51 234721 3858,32  6288,82 7584,03—
2072,031
16 85,66 455,80 1215,55  2349,51 3841,73  5704,38  9070,20
17 85,66 455,80 1215,55  2350,27  3859,93 566595  7856,17
18 85,66 455,80 1215,55  2350,21 3864,60 5746,44  7757,53
Iw. Wg Wy Wy Wq4 (250 Wy3 Wyyg

12 10019.4 +
1831,191
13 13329,6— 13329,6 +
3012,781  3012,781
14 8528,15 17347,6— 17347,6 +
4466,761 4466,761
15 7584,03 + 10824,10 22180,5— 22180,5 +

2072,031 6250,551  6250,551
16 9403,2— 94032+ 13395,80 27941,8— 279418 +
3355,441 3355441 8415,11  8415,11
17 12255,60 11504, 7— 11504,7+ 1619580 34750,7— 34750,7 4+
5020,261  5020,261 11011,61 11011,61
18 10296,60 13917,4— 139174+ 16031,90 19107,00 42732,4— 427324 +
7057,821  7057,821 14093,21 14093,21

Figure 6. Eigenforms of cantilever beam — transverse vibration.

higher eigenforms. Although the example is limited to a simple scheme, the
proposed method can be used to solve more complex systems such as beams with
more complicated geometry and any distribution of mass and strength parameters,
resting on a two-parameter heterogeneous elastic foundation. Since Chebyshev
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TABLE 5

Comparison of results

N W, N [on Ws We W, g

This paper 188,44 757,99 1703,97 3027,75 4729,39 6808,80 9286,04 12103,70
[2] Exact 188,45 758,08 1704,90

[4] 189,12 843,64 2116,50
FEM 189,19 760,55 1715,09 3076,50 4873,81 7607,60 10357,42 1417595

polynomials have some of the best approximation properties, it seems that
the proposed method will be particularly useful for solving beams that are complex

in

shape. If methods involving expansions into power series (references [7-9])

are applied to such beams, this may lead, because of these methods’ inferior
approximation properties, to considerable inaccuracies when the number of terms

in
of

a series is limited. The formulas derived by the author enable the direct solution
such complex problems.
The application of the proposed method to the determination of exact shape

functions for non-prismatic finite elements is particularly interesting since this is
only one step away from building up a library of such elements.

10.

11.
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